By Topic

A new flywheel energy storage system using hybrid superconducting magnetic bearings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. R. Fang ; Inst. of Electr. Eng., Acad. Sinica, Beijing, China ; L. Z. Lin ; L. G. Yan ; L. Y. Xiao

The high temperature superconductor (HTS) YBaCuO coupled with permanent magnets has been applied to construct the superconducting magnetic bearings (SMB) which can be utilized in some engineering fields such as the flywheel energy storage system (FESS). However, there are many problems needed to be resolved, such as low stiffness and damping, the uncertainty of working displacement, flux creep and flux flow. In this paper, a new FESS using hybrid SMB system which consists of SMB, active magnetic bearings (AMB), and permanent magnetic bearings (PMB) is presented. In this design, the authors constructed an experimental device for the FESS with hybrid SMB. An axial PMB is joined to provide a levitation force so as to suspend a heavier flywheel; in addition, two AMB are added in radial degrees to improve the stiffness by two orders of magnitude from 104 N/m to 106 N/m and the damping of FESS

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:11 ,  Issue: 1 )