By Topic

Active tuning of high frequency resonators and filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hui Xu ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; E. Gao ; Q. Y. Ma

In this paper, we present a new electromechanical approach of active control of high temperature superconducting (HTS) resonator and filter center frequency. The design of the tunable devices incorporates piezoelectric bender or tube actuator, which acts as a varactor of the resonance circuit, with YBCO thin film on LAO substrate. The resonator has an unloaded Q of over 18,000 at 77 K and a center frequency of 362 MHz and a tuning range of over 20% with unloaded Q over 10,000. By applying different voltages to the piezoelectric bender, we have tuned the resonance frequency over 30% with a good linearity and high Q. Based on this structure, a two-pole HTS bandpass filter was designed, fabricated and tested. The filter has a tunable center frequency from 17 to 20 MHz while maintaining a 2.5% 3dB bandwidth, and an insertion loss of less than 0.5 dB at 77 K

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:11 ,  Issue: 1 )