By Topic

IF bandwidth and noise temperature measurements of NbN HEB mixers on MgO substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miki, S. ; Graduate Sch. of Sci. & Technol., Kobe Univ., Japan ; Uzawa, Y. ; Kawakami, A. ; Zhen Wang

We report the fabrication and testing of hot electron bolometric mixers with an ultrathin NbN film as heterodyne receivers operating at terahertz frequencies. We found that the quality of the NbN strip is usually degraded by damage resulting from the fabrication process, and we developed a process for reducing such damage. We also fabricated HEB mixers with a new structure in order to study the IF bandwidth determined by the original quality of the NbN thin films. Investigations at 100 GHz revealed that the widest IF bandwidth of 2.0 GHz was obtained by a mixer based on a 2.8 nm-thick NbN film. An HEB mixer based on the 2.8 nm-thick NbN film was also fabricated and evaluated. The receiver noise temperature at 900 GHz was 780 K, the absorbed LO power was about 400 nW, and the conversion gain was -13 dB

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:11 ,  Issue: 1 )