Cart (Loading....) | Create Account
Close category search window
 

Optimizations enabled by a decoupled front-end architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reinman, G. ; Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA ; Calder, B. ; Austin, T.

In the pursuit of instruction-level parallelism, significant demands are placed on a processor's instruction delivery mechanism. Delivering the performance necessary to meet future processor execution targets requires that the performance of the instruction delivery mechanism scale with the execution core. Attaining these targets is a challenging task due to I-cache misses, branch mispredictions, and taken branches in the instruction stream. To counter these challenges, we present a fetch architecture that decouples the branch predictor from the instruction fetch unit. A Fetch Target Queue (FTQ) is inserted between the branch predictor and instruction cache. This allows the branch predictor to run far in advance of the address currently being fetched by the cache. The decoupling enables a number of architecture optimizations, including multilevel branch predictor design, fetch-directed instruction prefetching, and easier pipelining of the instruction cache. For the multilevel predictor, we show that it performs better than a single-level predictor, even when ignoring the effects of cycle-timing issues. We also examine the performance of fetch-directed instruction prefetching using a multilevel branch predictor and show that an average 19 percent speedup is achieved. In addition, we examine pipelining the instruction cache to achieve a faster cycle time for the processor pipeline and show that pipelining provides an average 27 percent speedup over not pipelining the instruction cache for the programs examined

Published in:

Computers, IEEE Transactions on  (Volume:50 ,  Issue: 4 )

Date of Publication:

Apr 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.