By Topic

Distributed network simulations using the dynamic simulation backplane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Riley, G.F. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Ammar, M.H. ; Fujimoto, R.M. ; Donghua Xu
more authors

Presents an approach for creating distributed, component-based simulations of communication networks by interconnecting models of sub-networks drawn from different network simulation packages. This approach supports the rapid construction of simulations for large networks by reusing existing models and software, and fast execution using parallel discrete event simulation techniques. A dynamic simulation backplane is proposed that provides a common format and protocol for message exchange, and services for transmitting data and synchronizing heterogeneous network simulation engines. In order to achieve plug-and-play interoperability, the backplane uses existing network communication standards and dynamically negotiates among the participant simulators to define a minimal subset of required information that each simulator must supply, as well as other optional information. The backplane then automatically creates a message format that can be understood by all participating simulators and dynamically creates the content of each message by using callbacks to the simulation engines. We describe our approach to interoperability as well as an implementation of the backplane. We present results that demonstrate the proper operation of the backplane by distributing a network simulation between two different simulation packages, ns2 and GloMoSim. Performance results show that the overhead for the creation of the dynamic messages is minimal. Although this work is specific to network simulations, we believe our methodology and approach can be used to achieve interoperability in other distributed computing applications as well

Published in:

Distributed Computing Systems, 2001. 21st International Conference on.

Date of Conference:

Apr 2001