Cart (Loading....) | Create Account
Close category search window
 

Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saitoh, K. ; Div. of Electron. & Inf. Eng., Hokkaido Univ., Sapporo, Japan ; Koshiba, M.

Perfectly matched layer (PML) boundary conditions are incorporated into the full-vectorial beam propagation method (BPM) based on a finite element scheme for the three-dimensional (3-D) anisotropic optical waveguide analysis. In the present approach, edge elements based on linear-tangential and quadratic-normal vector basis functions are used for the transverse field components. To show the validity and usefulness of this approach, numerical examples are shown for Gaussian beam propagation in proton-exchanged LiNbO3 optical waveguides. Numerical accuracy of the present PML boundary condition is investigated in detail by comparing the results with those of the conventional absorbing boundary condition (ABC)

Published in:

Lightwave Technology, Journal of  (Volume:19 ,  Issue: 3 )

Date of Publication:

Mar 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.