Cart (Loading....) | Create Account
Close category search window

Surface waves of printed antennas on planar artificial periodic dielectric structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang, H.-Y.D. ; Dept. of Electr. Eng. & Comput. Sci., Illinois Univ., Chicago, IL, USA ; Wang, J.

The characteristics of surface waves from a Hertzian (elementary) dipole on a multilayer structure with planar periodic material elements are investigated. An integral-equation moment method in conjunction with an analytical array scanning scheme is applied to the boundary-value problem associated with source interaction with infinite periodic structures. A pole-extraction technique and the saddle-point method are applied to find the far-zone periodic surface waves due to a current source. The investigation provides a fundamental study of surface wave properties of printed circuit antennas on planar artificial periodic (photonic bandgap) structures. It is found from the power patterns that surface waves are suppressed in the directions with wave bandgap and greatly enhanced in the directions just outside the bandgap zones. The surface wave pattern may be highly directive and the beam angle varies with frequencies. The finding suggests possible frequency-space selection devices. Experiments are carried out to validate the surface wave bandgap phenomenon and the beam angle frequency-selection property

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:49 ,  Issue: 3 )

Date of Publication:

Mar 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.