By Topic

A probabilistic solution to the MEG inverse problem via MCMC methods: the reversible jump and parallel tempering algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bertrand, C. ; Appl. Electron. Lab., Kanagawa Inst. of Technol., Japan ; Ohmi, M. ; Suzuki, R. ; Kado, H.

We investigated the usefulness of probabilistic Markov chain Monte Carlo (MCMC) methods for solving the magnetoencephalography (MEG) inverse problem, by using an algorithm composed of the combination of two MCMC samplers: Reversible Jump (RJ) and Parallel Tempering (PT). The MEG inverse problem was formulated in a probabilistic Bayesian approach, and we describe how the RJ and PT algorithms are fitted to our application. This approach offers better resolution of the MEG inverse problem even when the number of source dipoles is unknown (RJ), and significant reduction of the probability of erroneous convergence to local modes (PT). First estimates of the accuracy and resolution of our composite algorithm are given from results of simulation studies obtained with an unknown number of sources, and with white and neuromagnetic noise. In contrast to other approaches, MCMC methods do not just give an estimation of a "single best" solution, but they provide confidence interval for the source localization, probability distribution for the number of fitted dipoles, and estimation of other almost equally likely solutions.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:48 ,  Issue: 5 )