Cart (Loading....) | Create Account
Close category search window
 

Theoretical characterization of Raman oscillation with intracavity pumping of fiber lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jackson, S.D. ; Opt. Fibre Technol. Center, Sydney Univ., NSW, Australia

Theoretical results relating to the generation of continuous-wave (CW) output from fiber lasers that are internally pumped with light generated from the stimulated Raman effect are presented. This investigation establishes the important fiber and resonator parameters, such as the fiber length and glass composition, dopant concentration, and pump power required to realize this new form of fiber laser arrangement. Three examples are studied: the Ho3+-doped silica fiber laser that is pumped at a wavelength of 1.15 μm, the Er 3+-doped silica fiber laser which is pumped at 1.48 μm and, the Tm3+-doped silica fiber laser which Is pumped at 1.625 μm. These three examples cover first Stokes pumping, second Stokes pumping, and first Stokes pumping with direct dopant absorption of the pump light, respectively. The simulations involve the use of simple numerical models comprising the spatially dependent field propagation equations (under the slowly varying field approximation) and the rate equations for the population densities. It is established that intracavity Raman pumping of fiber lasers with first Stokes radiation is efficient when the losses at the pump, Stokes and laser wavelengths are kept low (<10 dB/km). It is also established that second Stokes pumping is, even with direct absorption of the pump light, theoretically quite efficient and, as a result, the Er3+-doped silica fiber laser which is pumped with second Stokes radiation at 1.48 μm may provide the best demonstration of intracavity Raman pumping

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 5 )

Date of Publication:

May 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.