By Topic

Adaptive genetic operators based on coevolution with fuzzy behaviors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Herrera, F. ; Dept. de Ciencias de la Comput. e Inteligencia Artificial, Granada Univ., Spain ; Lozano, M.

This paper presents a technique for adapting control parameter settings associated with genetic operators. Its principal features are: 1) the adaptation takes place at the individual level by means of fuzzy logic controllers (FLC) and 2) the fuzzy rule bases used by the FLC come from a separate genetic algorithm (GA) that coevolves with the GA that applies the genetic operator to be controlled. The goal is to obtain fuzzy rule bases that produce suitable control parameter values for allowing the genetic operator to show an adequate performance on the particular problem to be solved. The empirical study of an instance of the technique has shown that it adapts the parameter settings according to the particularities of the search space allowing significant performance to be achieved for problems with different difficulties

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:5 ,  Issue: 2 )