By Topic

Design of evolutionary algorithms-A statistical perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O. Francois ; Ecole Nat. Superieure d Inf. et de Math. Appliquees, Grenoble, France ; C. Lavergne

This paper describes a statistical method that helps to find good parameter settings for evolutionary algorithms. The method builds a functional relationship between the algorithm's performance and its parameter values. This relationship-a statistical model-can be identified thanks to simulation data. Estimation and test procedures are used to evaluate the effect of parameter variation. In addition, good parameter settings can be investigated with a reduced number of experiments. Problem labeling can also be considered as a model variable and the method enables identifying classes of problems for which the algorithm behaves similarly. Defining such classes increases the quality of estimations without increasing the computational cost

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:5 ,  Issue: 2 )