By Topic

Second-order adaptive Volterra system identification based on discrete nonlinear Wiener model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ogunfunmi, T. ; Dept. of Electr. Eng., Santa Clara Univ., CA, USA ; Chang, S.-L.

The authors present the nonlinear LMS adaptive filtering algorithm based on the discrete nonlinear Wiener (1942) model for second-order Volterra system identification application. The main approach is to perform a complete orthogonalisation procedure on the truncated Volterra series. This allows the use of the LMS adaptive linear filtering algorithm for calculating all the coefficients with efficiency. This orthogonalisation method is based on the nonlinear discrete Wiener model. It contains three sections: a single-input multi-output linear with memory section, a multi-input, multi-output nonlinear no-memory section and a multi-input, single-output amplification and summary section. For a white Gaussian noise input signal, the autocorrelation matrix of the adaptive filter input vector can be diagonalised unlike when using the Volterra model. This dramatically reduces the eigenvalue spread and results in more rapid convergence. Also, the discrete nonlinear Wiener model adaptive system allows us to represent a complicated Volterra system with only few coefficient terms. In general, it can also identify the nonlinear system without over-parameterisation. A theoretical performance analysis of steady-state behaviour is presented. Computer simulations are also included to verify the theory

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:148 ,  Issue: 1 )