By Topic

GaAs heterostructure FET frequency dividers fabricated with high-yield 0.5 mu m direct-write trilevel-gate-resist

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ren, F. ; AT&T Bell Labs., Murray Hill, NJ, USA ; Resnick, D.J. ; Atwood, D.K. ; Tu, C.W.
more authors

Frequency dividers and FET test structures have been fabricated on selectively doped n+AlGaAs/GaAs heterostructure FETs (HFETs) with 0.5 mu m gate length electron-beam direct-writing on a novel trilevel resist, EBR-9/Ge/PMGI. A divide-by-two master-slave frequency divider fabricated with direct-coupled FET logic gates operated up to 9.3 GHz. The input frequency range of a divide-by-two transmission-gate frequency divider was from 3.2 to 12.2 GHz, with a supply voltage of 1.2 V at room temperature. The average propagation delay (fan-in and fan-out=1) was 18.2 ps/gate, with a power dissipation of 3.9 mW/stage. With a 3.5 mu m source-drain spacing, a peak transconductance of 360 mS/mm was measured. The functional yield of both discrete devices and circuits was 92% across 2 in-diameter wafers.

Published in:

Electronics Letters  (Volume:25 ,  Issue: 24 )