By Topic

Electrodeposited iridium oxide for neural stimulation and recording electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. D. Meyer ; EIC Lab. Inc., Norwood, MA, USA ; S. F. Cogan ; T. H. Nguyen ; R. D. Rauh

Iridium oxide films formed by electrodeposition onto noniridium metal substrates are compared with activated iridium oxide films (AIROFs) as a low impedance, high charge capacity coating for neural stimulation and recording electrodes. The electrodeposited iridium oxide films (EIROFs) were deposited on Au, Pt, PtIr, and 316 LVM stainless steel substrates from a solution of IrCl 4, oxalic acid, and K 2CO 3. A deposition protocol involving 50 potential sweeps at 50 mV/s between limits of 0.0 V and 0.55 V (versus Ag|AgCl) followed by potential pulsing between the same limits produced adherent films with a charge storage capacity of >25 mC/cm 2. Characterization by cyclic voltammetry and impedance spectroscopy revealed no differences in the electrochemical behavior of EIROF on non-Ir substrates and AIROF. The mechanical stability of the oxides was evaluated by ultrasonication in distilled water followed by dehydration and rehydration. Stability under charge injection was evaluated using 200 μs, 5.9 A/cm 2 (1.2 mC/cm 2) cathodal pulses. Loss of iridium oxide charge capacity was comparable for AIROFs and the EIROFs, ranging from 1% to 8% of the capacity immediately after activation or deposition. The EIROFs were deposited and evaluated on silicon microprobe electrodes and on metallized polyimide electrodes being developed for neural recording and stimulation applications.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:9 ,  Issue: 1 )