By Topic

Polysilicon TFT technology for active matrix OLED displays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stewart, M. ; Lucent Technols., Allentown, PA, USA ; Howell, R.S. ; Pires, L. ; Hatalis, M.K.

The integration of active matrix polysilicon TFT technology with organic light emitting diode (OLED) displays has been investigated with the goal of producing displays of uniform brightness. This work identifies and addresses several process integration issues unique to this type of display which are important in achieving bright and uniform displays. Rapid thermal processing has been incorporated to achieve uniform polysilicon microstructure, along with silicides to reduce parasitic source and drain series resistance. Using these processes, TFT drain current nonuniformity has been reduced below 5% for 90% of the devices. This work also introduces transition metals to produce low resistance contacts to ITO and to eliminate hillock formation in the aluminum metallization. These processes, along with spin on glasses for planarization, have been used to produce functional active matrix arrays for OLED displays. The final array pixel performance is also presented

Published in:

Electron Devices, IEEE Transactions on  (Volume:48 ,  Issue: 5 )