By Topic

MOMCO: method of moment components for passive model order reduction of RLCG interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goknar, I.C. ; Dept. of Electron. & Commun., Istanbul Tech. Univ., Turkey ; Kutuk, H. ; Sung-Mo Kang

We introduce a new concept called moment components and a new method based on it to obtain passive reduced-order models of interconnect networks. In this method, the impedance matrix moments of the interconnect network are partitioned into their inductive, capacitive and mixed inductive/capacitive moment components. The method of moment components is described in a formal manner using analysis and synthesis equalities. Two significant contributions of the method of moment components are: 1) new decomposition of moments into parts which reflect passivity in all moments of passive networks; and 2) the analysis equalities impart a regular pattern in terms of the moment components, thus simplifying the moment generation for our method. None of these features is observable in conventional complete moment terms. Two new methods for obtaining passive reduced-order models based on the method of moment components are introduced. The passive reduced-order models are obtained by matching their impedance moment components to those of the original interconnect network through the synthesis equalities. Due to nonnegative definiteness of the moment components, the match in the moment components preserves the passivity of the original interconnect in the reduced-order model. The method of moment components does not have the instability problem of general moment matching techniques. The reduced-order model is specifically targeted for fast timing simulators so that interconnect effects can be simulated efficiently

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:48 ,  Issue: 4 )