By Topic

Performance of coherent DS-SS/QPSK for mobile communications in fast-fading multipath and high-frequency offset

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seok Jun Ko ; Sch. of Electr. & Comput. Eng., SungKyunKwan Univ., South Korea ; Kyung Ha Lee ; Hyung Jin Choi

We derive a closed-form bit error rate (BER) solution for equal- and nonequal-strength L-path channels considering imperfect channel estimation. The channel model assumes independent paths with Rayleigh fading statistics in a single-cell downlink environment. By using a simple maximum likelihood (ML) estimator, the effects of the channel estimation error due to Doppler shift, residual carrier frequency offset, interference, and additive white Gaussian noise are analyzed. In addition, we present the tradeoff between the noise compression capability and phase tracking capability of the ML estimator with observation length as a parameter. The results indicate that even with channel estimation, the high carrier frequency offset makes an uncoded BER unacceptably high. Also, we present two kinds of modulation techniques such as EC-QPSK and NC-QPSK. Through analysis, we show the performance comparison between these modulation techniques. Finally, we verify the derived BER by using Monte Carlo computer simulation

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:50 ,  Issue: 1 )