Cart (Loading....) | Create Account
Close category search window
 

Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with Hermite polynomial expansions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bershad, N.J. ; Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA ; Celka, P. ; McLaughlin, S.

This paper investigates the statistical behavior of a sequential adaptive gradient search algorithm for identifying an unknown Wiener-Hammerstein (1958) system (WHS) with Gaussian inputs. The WHS nonlinearity is assumed to be expandable in a series of orthogonal Hermite polynomials. The sequential procedure uses (1) a gradient search for the unknown coefficients of the Hermite polynomials, (2) an LMS adaptive filter to partially identify the input and output linear filters of the WHS, and (3) the higher order terms in the Hermite expansion to identify each of the linear filters. The third step requires the iterative solution of a set of coupled nonlinear equations in the linear filter coefficients. An alternative scheme is presented if the two filters are known a priori to be exponentially shaped. The mean behavior of the various gradient recursions are analyzed using small step-size approximations (slow learning) and yield very good agreement with Monte Carlo simulations. Several examples demonstrate that the scheme provides good estimates of the WHS parameters for the cases studied

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 5 )

Date of Publication:

May 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.