By Topic

Long codes for generalized FH-OFDMA through unknown multipath channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shengli Zhou ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Giannakis, G.B. ; Scaglione, A.

A generalized frequency-hopping (GFH) orthogonal frequency-division multiple-access (OFDMA) system is developed in this paper as a structured long code direct-sequence code-division multiple-access (DS-CDMA) system in order to bridge frequency-hopped multicarrier transmissions with long code DS-CDMA. Through judicious code design, multiuser interference is eliminated deterministically in the presence of unknown frequency-selective multipath channels. Thanks to frequency-hopping, no single user suffers from consistent fading effects and constellation-irrespective channel identifiability is guaranteed regardless of channel nulls. A host of blind channel estimation algorithms are developed trading off complexity with performance. Two important variants, corresponding to slow- and fast-hopping, are also addressed with the latter offering symbol recovery guarantees. Performance analysis and simulation results illustrate the merits of GFH-OFDMA relative to conventional OFDMA and long code DS-CDMA with pseudorandom noise codes and RAKE reception

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 4 )