By Topic

A data-adaptive knot selection scheme for fitting splines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xuming He ; Dept. of Stat., Illinois Univ., Champaign, IL, USA ; Lixin Shen ; Zuowei Shen

A critical component of spline smoothing is the choice of knots, especially for curves with varying shapes and frequencies in its domain. We consider a two-stage knot selection scheme for adaptively fitting splines to data subject to noise. A potential set of knots is chosen based on information from certain wavelet decompositions with the intention of placing more points where the curve shows rapid changes. The final knot selection is then made based on statistical model selection ideas. We show that the proposed method is well suited for a variety of smoothing and noise filtering needs.

Published in:

IEEE Signal Processing Letters  (Volume:8 ,  Issue: 5 )