By Topic

Model-based MCE bound to the true Bayes' error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schluter, R. ; Lehrstuhl fur Inf., Tech. Hochschule Aachen, Germany ; Ney, H.

We show that the minimum classification error (MCE) criterion gives an upper bound to the true Bayes' error rate independent of the corresponding model distribution. In addition, we show that model-free optimization of the MCE criterion leads to a closed form solution in the asymptotic case of infinite training data. While leading to the Bayes' error rate, the resulting model distribution differs from the true distribution. This suggests that the structure of model distributions trained with the MCE criterion should differ from the structure of the true distributions, as they are usually used in statistical pattern recognition.

Published in:

Signal Processing Letters, IEEE  (Volume:8 ,  Issue: 5 )