By Topic

On the duality between line-spectral frequencies and zero-crossings of signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Kumaresan ; Dept. of Electr. Eng., Rhode Island Univ., Kingston, RI, USA ; Y. Wang

Line spectrum pairs (LSPs) are the roots (located in the complex-frequency or z-plane) of symmetric and antisymmetric polynomials synthesized using a linear prediction (LPC) polynomial. The angles of these roots, known as line-spectral frequencies (LSFs), implicitly represent the LPC polynomial and hence the spectral envelope of the underlying signal. By exploiting the duality between the time and frequency domains, we define analogous polynomials in the complex-time variable ζ. The angles of the roots of these polynomials in ζ-plane now correspond to zero-crossing time instants. Analogous to the fact that the line-spectral frequencies represent the spectral envelope of a signal, these zero-crossing locations can be used to represent the temporal envelope of bandpass signals

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:9 ,  Issue: 4 )