By Topic

Optimizing large join queries using a graph-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chiang Lee ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chi-Sheng Shih ; Yaw-Huei Chen

Although many query tree optimization strategies have been proposed in the literature, there still is a lack of a formal and complete representation of all possible permutations of query operations (i.e., execution plans) in a uniform manner. A graph-theoretic approach presented in the paper provides a sound mathematical basis for representing a query and searching for an execution plan. In this graph model, a node represents an operation and a directed edge between two nodes indicates the older of executing these two operations in an execution plan. Each node is associated with a weight and so is an edge. The weight is an expression containing optimization required parameters, such as relation size, tuple size, join selectivity factors. All possible execution plans are representable in this graph and each spanning tree of the graph becomes an execution plan. It is a general model which can be used in the optimizer of a DBMS for internal query representation. On the basis of this model, we devise an algorithm that finds a near optimal execution plan using only polynomial time. The algorithm is compared with a few other popular optimization methods. Experiments show that the proposed algorithm is superior to the others under most circumstances

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 2 )