By Topic

Representation and processing of structures with binary sparse distributed codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rachkovskij, D.A. ; Glushkov (V.M.) Cybern. Center, Kiev, Ukraine

The schemes for compositional distributed representations include those allowing on-the-fly construction of fixed dimensionality codevectors to encode structures of various complexity. Similarity of such codevectors takes into account both structural and semantic similarity of represented structures. We provide a comparative description of sparse binary distributed representation developed in the framework of the associative-projective neural network architecture and the more well known holographic reduced representations of T.A. Plate (1995) and binary spatter codes of P. Kanerva (1996). The key procedure in associative-projective neural networks is context-dependent thinning which binds codevectors and maintains their sparseness. The codevectors are stored in structured memory array which can be realized as distributed auto-associative memory. Examples of distributed representation of structured data are given. Fast estimation of the similarity of analogical episodes by the overlap of their codevectors is used in the modeling of analogical reasoning both for retrieval of analogs from memory and for analogical mapping

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 2 )