Cart (Loading....) | Create Account
Close category search window
 

Concept analysis for module restructuring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tonella, P. ; Centro per la Ricerca Sci. e Tecnologica, Trento, Italy

Low coupling between modules and high cohesion inside each module are the key features of good software design. This paper proposes a new approach to using concept analysis for module restructuring, based on the computation of extended concept subpartitions. Alternative modularizations, characterized by high cohesion around the internal structures that are being manipulated, can be determined by such a method. To assess the quality of the restructured modules, the trade-off between encapsulation violations and decomposition is considered, and proper measures for both factors are defined. Furthermore, the cost of restructuring is evaluated through a measure of distance between the original and the new modularizations. Concept subpartitions were determined for a test suite of 20 programs of variable size: 10 public-domain and 10 industrial applications. The trade-off between encapsulation and decomposition was measured on the resulting module candidates, together with an estimate of the cost of restructuring. Moreover, the ability of concept analysis to determine meaningful modularizations was assessed in two ways. First, programs without encapsulation violations were used as oracles, assuming the absence of violations as an indicator of careful decomposition. Second, the suggested restructuring interventions were actually implemented in some case studies to evaluate the feasibility of restructuring and to deeply investigate the code organization before and after the intervention. Concept analysis was experienced to be a powerful tool supporting module restructuring

Published in:

Software Engineering, IEEE Transactions on  (Volume:27 ,  Issue: 4 )

Date of Publication:

Apr 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.