By Topic

Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Setnes ; Heineken Technical Service, Zoeterwoude, Netherlands ; U. Kaymak

Advances in computational methods have led, in the world of financial services, to huge databases of client and market information. In the past decade, various computational intelligence techniques have been applied in mining this data for obtaining knowledge and in-depth information about the clients and the markets. The paper discusses the application of fuzzy clustering in target selection from large databases for direct marketing purposes. Actual data from the campaigns of a large financial services provider are used as a test case. The results obtained with the fuzzy clustering approach are compared with those resulting from the current practice of using statistical tools for target selection

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:9 ,  Issue: 1 )