By Topic

State-dependent M/G/1 type queueing analysis for congestion control in data networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Altman, E. ; Inst. Nat. de Recherche en Inf. et Autom., Sophia-Antipolis, France ; Avrachenkov, K. ; Barakat, C. ; Nunez-Queija, R.

We study in this paper a TCP-like linear-increase multiplicative-decrease flow control mechanism. We consider congestion signals that arrive in batches according to a Poisson process. We focus on the case when the transmission rate cannot exceed a certain maximum value. We write the Kolmogorov equations and we use Laplace transforms to calculate the distribution of the transmission rate in the steady state as well as its moments. Our model is particularly useful to study the behavior of TCP, the congestion control mechanism in the Internet. By a simple transformation, the problem can be reformulated in terms of an equivalent M/G/1 queue, where the transmission rate in the original model corresponds to the workload in the `dual' queue. The service times in the queueing model are not i.i.d., and they depend on the workload in the system

Published in:

INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE  (Volume:3 )

Date of Conference:

2001