By Topic

Effective permittivities for second-order accurate FDTD equations at dielectric interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyu-Pyung Hwang ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Cangellaris, A.C.

In Yee's finite-difference time-domain (FDTD) scheme, effective permittivities are often used to account for offsets of dielectric interfaces from grid nodes. The specific values of these effective permittivities must be chosen in such a way that the second-order accuracy of the scheme is preserved. It is shown in this work that, contrary to more elaborate techniques proposed recently for the development of these effective permittivities, a rigorous application of the integral forms of Maxwell's curl equations on the Yee's lattice leads to the desired values in a straightforward fashion. Numerical experiments in a two-dimensional (2-D) cavity are used to verify that the calculated effective permittivities preserve the second-order accuracy of the FDTD scheme.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:11 ,  Issue: 4 )