Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Minimum-energy broadcast routing in static ad hoc wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wan, P.-J. ; Dept. of Comput. Sci., Illinois Inst. of Technol., Chicago, IL, USA ; Calinescu, G. ; Li, X.-Y. ; Frieder, O.

Energy conservation is a critical issue in ad hoc wireless networks for node and network life, as the nodes are powered by batteries only. One major approach for energy conservation is to route a communication session along the routes which requires the lowest total energy consumption. This optimization problem is referred to as minimum-energy routing. While minimum-energy unicast routing can be solved in polynomial time by shortest-path algorithms, it remains open whether minimum-energy broadcast routing can be solved in polynomial time, despite the NP-hardness of its general graph version. Previously three greedy heuristics were proposed in Wieselthier et al. (2000): MST (minimum spanning tree), SPT (shortest-path tree), and BIP (broadcasting incremental power). They have been evaluated through simulations in Wieselthier et al.], but little is known about their analytical performance. The main contribution of this paper is the quantitative characterization of their performances in terms of approximation ratios. By exploring geometric structures of Euclidean MSTs, we have been able to prove that the approximation ratio of MST is between 6 and 12, and the approximation ratio of BIP is between 13/3 and 12. On the other hand, the approximation ratio of SPT is shown to be at least n/2, where n is the number of receiving nodes. To our best knowledge, these are the first analytical results for minimum-energy broadcasting

Published in:

INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE  (Volume:2 )

Date of Conference: