By Topic

The one-inclusion graph algorithm is near-optimal for the prediction model of learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Li ; Dept. of Comput. Sci., Nat. Univ. of Singapore, Singapore ; Long, P.M. ; Srinivasan, A.

Haussler, Littlestone and Warmuth (1994) described a general-purpose algorithm for learning according to the prediction model, and proved an upper bound on the probability that their algorithm makes a mistake in terms of the number of examples seen and the Vapnik-Chervonenkis (VC) dimension of the concept class being learned. We show that their bound is within a factor of 1+o(1) of the best possible such bound for any algorithm

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 3 )