By Topic

On quantum detection and the square-root measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eldar, Y.C. ; Res. Lab. of Electron., MIT, Cambridge, MA, USA ; Forney, G.D., Jr.

We consider the problem of constructing measurements optimized to distinguish between a collection of possibly nonorthogonal quantum states. We consider a collection of pure states and seek a positive operator-valued measure (POVM) consisting of rank-one operators with measurement vectors closest in squared norm to the given states. We compare our results to previous measurements suggested by Peres and Wootters (1991) and Hausladen et al. (1996), where we refer to the latter as the square-root measurement (SRM). We obtain a new characterization of the SRM, and prove that it is optimal in a least-squares sense. In addition, we show that for a geometrically uniform state set the SRM minimizes the probability of a detection error. This generalizes a similar result of Ban et al. (see Int. J. Theor. Phys., vol.36, p.1269-88, 1997)

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 3 )