Cart (Loading....) | Create Account
Close category search window
 

Investigations on plasma-polymer-coated SAW and STW resonators for chemical gas-sensing applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Avramov, I.D. ; Inst. of Solid State Phys., Bulgarian Acad. of Sci., Sofia, Bulgaria ; Kurosawa, S. ; Rapp, M. ; Krawczak, P.
more authors

Results from gas probing with various analyte vapors on high-Q low-loss surface transverse wave (STW) and surface acoustic wave (SAW) resonators coated with thin plasma-polymer films of hexamethyldisiloxane (HMDSO), styrene, and allyl alcohol at different polymerization conditions are presented in this paper. At the same acoustic wavelength of 7.22 μm and identical film thicknesses, HMDSO-coated STW devices feature substantially higher relative sensitivities to all analytes compared to their SAW counterparts. When operated in a microwave oscillator loop, plasma-poly-styrene and allyl-alcohol-coated STW devices generate strong sensor signals, even at low analyte concentrations, retaining an oscillator short-term stability in the 1×10-9/s to 1×10-8/s range. A 250 kHz sensor signal with 7×10-9/s stability was obtained from a styrene coated 700 MHz STW resonator oscillator at a 1400 parts per million concentration of xylene vapor, which results in a measurement resolution of less than 40 parts per billion for xylene in the ambient air. It is shown that, with respect to sensitivity and stability over long probing periods, plasma-polymer films may become a serious competitor to the more or less unstable soft polymer coatings currently used in SAW-based gas sensors for applications in wireless systems for environmental control and protection

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:49 ,  Issue: 4 )

Date of Publication:

Apr 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.