By Topic

Sensorless vector control of synchronous reluctance motors with disturbance torque observer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Senjyu, T. ; Fac. of Eng., Ryukyus Univ., Okinawa, Japan ; Shingaki, T. ; Uezato, K.

The elimination of the position sensor has been one important requirement in vector control systems because the position sensor spoils the reliability and simplicity of drive systems. Therefore, we present a sensorless vector control technique for synchronous reluctance motors. The rotor position is calculated easily from ds-qs-axes flux linkages which are estimated with a first-order lag compensator. Furthermore, utilizing estimated rotor position as the input of the full-order observer, the rotor speed and disturbance torque are estimated. The proposed sensorless vector control scheme is demonstrated with experimental results

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:48 ,  Issue: 2 )