By Topic

Optimizing motion-vector accuracy in block-based video coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

All motion-vectors are encoded with the same tired accuracy, typically 1/2-pixel accuracy, but the best motion-vector accuracies are not known. We present a theoretical framework to find the motion-vector accuracies that minimize the total encoding rate with this type of coder, for the classical case where all motion-vectors are encoded with the same accuracy, and for new cases where the accuracy is adapted on a frame-by-frame or block-by-block basis. To do this, we analytically model the effect of motion-vector accuracy and show that the energy in a block of the difference frame is approximately quadratic in the accuracy of the block's motion-vector. This energy-accuracy model is then used to obtain expressions for the total bit rate (motion rate plus difference frame rate) in terms of the blocks' motion accuracies and other key parameters. Minimizing these expressions leads to simple formulas that indicate how to choose the best motion-vector accuracies for this type of coder. These formulas also show that the motion accuracy must increase where more texture is present and decrease when there is much scene noise or when the level of compression is high. We implement several entropy and MPEG-like video coders based on our analysis and present experimental results on synthetic and real video sequences. These results suggest that our formulas are accurate and that significant bit rate savings can be achieved when our optimization procedures are used

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:11 ,  Issue: 4 )