By Topic

A comparative study on heuristic algorithms for generating fuzzy decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, X.Z. ; Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China ; Yeung, D.S. ; Tsang, E.C.C.

Fuzzy decision tree induction is an important way of learning from examples with fuzzy representation. Since the construction of optimal fuzzy decision tree is NP-hard, the research on heuristic algorithms is necessary. In this paper, three heuristic algorithms for generating fuzzy decision trees are analyzed and compared. One of them is proposed by the authors. The comparisons are twofold. One is the analytic comparison based on expanded attribute selection and reasoning mechanism; the other is the experimental comparison based on the size of generated trees and learning accuracy. The purpose of this study is to explore comparative strengths and weaknesses of the three heuristics and to show some useful guidelines on how to choose an appropriate heuristic for a particular problem

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:31 ,  Issue: 2 )