Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Fault-tolerant evolvable hardware using field-programmable transistor arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Keymeulen, D. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Zebulum, R. ; Jin, Y. ; Stoica, A.

The paper presents an evolutionary approach to the design of fault-tolerant VLSI (very large scale integrated) circuits using EHW (evolvable hardware). The EHW research area comprises a set of applications where GA (genetic algorithms) are used for the automatic synthesis and adaptation of electronic circuits. EHW is particularly suitable for applications requiring changes in task requirements and in the environment or faults, through its ability to reconfigure the hardware structure dynamically and autonomously. This capacity for adaptation is achieved via the use of GA search techniques, in our experiments, a fine-grained CMOS (complementary metal-oxide silicon) FPTA (field-programmable FPGA transistor array) architecture is used to synthesize electronic circuits. The FPTA is a reconfigurable architecture, programmable at the transistor level and specifically designed for EHW applications. The paper demonstrates the power of EA to design analog and digital fault-tolerant circuits. It compares two methods to achieve fault-tolerant design, one based on fitness definition and the other based on population. The fitness approach defines, explicitly, the faults that the component can encounter during its life, and evaluates the average behavior of the individuals. The population approach, on the other hand, uses the implicit information of the population statistics accumulated by the GA over many generations. The paper presents experiment results obtained using both approaches for the synthesis of a fault-tolerant digital circuit (XNOR) and a fault-tolerant analog circuit (multiplier)

Published in:

Reliability, IEEE Transactions on  (Volume:49 ,  Issue: 3 )