By Topic

Texture segmentation using Gaussian-Markov random fields and neural oscillator networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cesmeli, E. ; Biomed. Eng. Center, Ohio State Univ., Columbus, OH, USA ; DeLiang Wang

We propose an image segmentation method based on texture analysis. Our method is composed of two parts. The first part determines a novel set of texture features derived from a Gaussian-Markov random fields (GMRF) model. Unlike a GMRF-based approach, our method does not employ model parameters as features or require the extraction of features for a fixed set of texture types a priori. The second part is a 2D array of locally excitatory globally inhibitory oscillator networks (LEGION). After being filtered for noise suppression, features are used to determine the local couplings in the network. When LEGION runs, the oscillators corresponding to the same texture tend to synchronize, whereas different texture regions tend to correspond to distinct phases. In simulations, a large system of differential equations is solved for the first time using a recently proposed method for integrating relaxation oscillator networks. We provide results on real texture images to demonstrate the performance of our method

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 2 )