By Topic

Nonlinear measures: a new approach to exponential stability analysis for Hopfield-type neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hong Qiao ; Dept. of Manuf. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon, Hong Kong ; Jigen Peng ; Zong-Ben Xu

In this paper, a new concept called nonlinear measure is introduced to quantify stability of nonlinear systems in the way similar to the matrix measure for stability of linear systems. Based on the new concept, a novel approach for stability analysis of neural networks is developed. With this approach, a series of new sufficient conditions for global and local exponential stability of Hopfield type neural networks is presented, which generalizes those existing results. By means of the introduced nonlinear measure, the exponential convergence rate of the neural networks to stable equilibrium point is estimated, and, for local stability, the attraction region of the stable equilibrium point is characterized. The developed approach can be generalized to stability analysis of other general nonlinear systems

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 2 )