Cart (Loading....) | Create Account
Close category search window

Dynamic reservation TDMA protocol for wireless ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Frigon, J.-F. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Leung, V.C.M. ; Chan Bun Chan, H.

A dynamic reservation time division multiple access (DR-TDMA) control protocol that extends the capabilities of asynchronous transfer mode (ATM) networks over the wireless channel is proposed in this paper. DR-TDMA combines the advantages of distributed access and centralized control for transporting constant bit rate (CBR), variable bit rate (VBR), and available bit rate (ABR) traffic efficiently over a wireless channel. The contention slots access for reservation requests is governed by the framed pseudo-Bayesian priority (FPBP) Aloha protocol that provides different access priorities to the control packets in order to improve the quality-of-service (QoS) offered to time sensitive connections. DR-TDMA also features a novel integrated resource allocation algorithm that efficiently schedules terminals' reserved access to the wireless ATM channel by considering their requested bandwidth and QoS. Integration of CBR, voice, VBR, data, and control traffic over the wireless ATM channel using the proposed DR-TDMA protocol is considered in this paper. Simulation results are presented to show that the protocol respects the required QoS of each traffic category while providing a highly efficient utilization of approximately 96% for the wireless ATM channel

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:19 ,  Issue: 2 )

Date of Publication:

Feb 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.