Cart (Loading....) | Create Account
Close category search window
 

Dynamic channel allocation techniques using adaptive modulation and adaptive antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blogh, J.S. ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Cherriman, P.J. ; Hanzo, L.

This article studies the impact of adaptive quadrature amplitude modulation (AQAM) on network performance when applied to a cellular network, using adaptive antennas in conjunction with both fixed channel allocation (FCA) and locally distributed dynamic channel allocation (DCA) schemes. The performance advantages of using adaptive modulation are investigated in terms of the overall network performance, mean transmitted power, and the average network throughput. Adaptive modulation allowed an extra 51% of users to be supported by an FCA 4-QAM network, while in conjunction with DCA, an additional 54% user capacity was attained

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:19 ,  Issue: 2 )

Date of Publication:

Feb 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.