By Topic

Frequency stabilization of a novel 1.5-μm Er-Yb bulk laser to a 39K sub-Doppler line at 770.1 nm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Svelto, C. ; Dipt. di Elettronica e Inf., Politecnico di Milano, Italy ; Ferrario, F. ; Arie, A. ; Arbore, M.A.
more authors

The second harmonic output at 770.1 nm of a novel and compact Er-Yb:glass laser was frequency stabilized against the sub-Doppler linewidth of a crossover line in the 39K 4S1/2-4P 1/2 transition as obtained by saturation spectroscopy. Efficient frequency doubling, with a conversion efficiency of ~220% W -1, and with second harmonic power in excess of 15 μW, was achieved in a waveguide made in a periodically poled lithium niobate crystal. As measured through the analysis of the closed-loop error signal, a laser frequency instability of ~200 Hz was obtained; the Allan standard deviation of the frequency samples was below 4×10-12 for integration times τ between 100 ms and 100 s, and reached a lowest floor level of 8×10-13 for 20 s⩽τ⩽100 s. The measured frequency noise spectral density was in good agreement with the analysis performed in the time domain. Compared to previously published data for stabilized solid-state laser sources in this wavelength region, these results represent a significant improvement in the frequency stability

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 4 )