By Topic

Magnetic anisotropies in single and multilayered thin films grown by bowed-substrate sputtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
M. Vazquez ; Inst. de Magnetismo Aplicado, Univ. Complutense de Madrid, Spain ; D. Garcia ; C. Prados ; A. Asenjo
more authors

Thin-film structures composed of nearly nonmagnetostrictive single-layer Co76Fe4B20 or magnetostrictive Fe80B20 and Co75Si15B10 amorphous layers have been deposited on bowed glass substrates using the RF-sputtering technique. The fabrication procedure induces a postdeposition compressive stress in the thin-film structure when the sample is retrieved from an arching device in the sputtering chamber. This results in an induced magneto-elastic anisotropy that governs the magnetic easy axis of the film, depending on the sign of the magnetostriction constant of each layer. Particular attention is paid here to heterogeneous structures made of bi- or multilayers with magnetic easy axis oriented in a different direction in each layer. Bulk magnetic properties were evaluated from hysteresis loops and thermomagnetization measured by vibrating sample magnetometry (VSM) and quantum interference device (SQUID) magnetometry. Magnetic domain walls and out-of-plane magnetized domains were observed by a Kerr imaging system and magnetic force microscopy. The combination of microstructure and strains induced in the layers determines the orientation of the observed magnetic anisotropies, which vary from high in-plane anisotropies up to out-of-plane orientations for selected films. The results, which provide reassurance that effective anisotropies are induced in each of the layers, are discussed in terms of the interactions between magnetic phases with different induced easy magnetization axes

Published in:

IEEE Transactions on Magnetics  (Volume:36 ,  Issue: 6 )