By Topic

Magnetic ground state of a thin-film element

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rave, W. ; Inst. fur Festkorper und Werkstofforschung, Tech. Univ. Dresden, Germany ; Hubert, Alex

By means of three-dimensional numerical calculations we studied possible micromagnetic configurations in a rectangular Permalloy-like thin-film element. The parameters were chosen to be compatible with the so-called micromagnetic standard problem 1. We demonstrate that for these parameters a diamond domain pattern is the lowest energy state that replaces cross-tie patterns favorable in larger elements. Only at smaller sizes does the originally envisaged Landau pattern form the ground state. The transition to high-remanence structures (or what would be comparable to a “single-domain” state) is found for lateral sizes that are an order of magnitude smaller than the benchmark parameters. The transitions among the different domain patterns become plausible in view of the energy of symmetric Neel walls in extended thin films. The features of the high-remanence structures can be derived from the principle of uniform charge distribution

Published in:

Magnetics, IEEE Transactions on  (Volume:36 ,  Issue: 6 )