By Topic

High-performance strain-compensated InGaAs-GaAsP-GaAs (/spl lambda/=1.17 μm) quantum well diode lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tansu, N. ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; Mawst, L.J.

This letter reports studies on highly strained and strain-compensated InGaAs quantum-well (QW) active diode lasers on GaAs substrates, fabricated by low-temperature (550/spl deg/C) metal-organic chemical vapor deposition (MOCVD) growth. Strain compensation of the (compressively strained) InGaAs QW is investigated by using either InGaP (tensile-strained) cladding layer or GaAsP (tensile-strained) barrier layers. High-performance /spl lambda/=1.165 μm laser emission is achieved from InGaAs-GaAsP strain-compensated QW laser structures, with threshold current densities of 65 A/cm2 for 1500-μm-cavity devices and transparency current densities of 50 A/cm2. The use of GaAsP-barrier layers are also shown to significantly improve the internal quantum efficiency of the highly strained InGaAs-active laser structure. As a result, external differential quantum efficiencies of 56% are achieved for 500-μm-cavity length diode lasers.

Published in:

Photonics Technology Letters, IEEE  (Volume:13 ,  Issue: 3 )