By Topic

A novel full-bridge DC-DC converter for battery charging using secondary-side control combines soft switching over the full load range and low magnetics requirement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Ayyanar ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; N. Mohan

A novel full-bridge DC-DC configuration with a tapped transformer and secondary side control is proposed. It achieves zero-voltage switching for the primary side switches and zero-current switching for the secondary side switches, under all operating conditions. The conduction losses are significantly lower than those in the conventional soft-switching DC-DC converters. Due to superior filter waveforms, the filter requirements, both at the input and at the output, are significantly reduced. The features of the proposed converter are compared with those for the conventional phase-modulated full-bridge DC-DC converters. The proposed configuration is ideally suited for the AC-DC stage of high-power battery-charging applications with a power-factor-corrected preregulator. Analytical and experimental results on a 500 W/100 kHz prototype are presented

Published in:

IEEE Transactions on Industry Applications  (Volume:37 ,  Issue: 2 )