By Topic

Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gan, Q. ; Dept. of Electron. & Comput. Sci., Southampton Univ. ; Harris, C.J.

Currently there exist two commonly used measurement fusion methods for Kalman-filter-based multisensor data fusion. The first (Method I) simply merges the multisensor data through the observation vector of the Kalman filter, whereas the second (Method II) combines the multisensor data based on a minimum-mean-square-error criterion. This paper, based on an analysis of the fused state estimate covariances of the two measurement fusion methods, shows that the two measurement fusion methods are functionally equivalent if the sensors used for data fusion, with different and independent noise characteristics, have identical measurement matrices. Also presented are simulation results on state estimation using the two measurement fusion methods, followed by the analysis of the computational advantages of each method

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:37 ,  Issue: 1 )