By Topic

Active permanent magnet support for a superconducting magnetic-bearing flywheel rotor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sivrioglu, S. ; Lab. of Mech. Eng., AIST, Ibaraki, Japan ; Nonami, K.

This paper proposes a novel active permanent magnet support approach to improve the lateral stiffness of a superconducting magnetic-bearing flywheel rotor system. An actual flywheel rotor system levitated with high-temperature superconducting magnetic bearings is modeled and then analyzed with a moving permanent magnet support placed at the top of the rotor. The active support principle defined in this study is based on moving the permanent magnet support 180/spl deg/ out of the phase with the rotor displacement. A complete dynamical equation of the flywheel rotor is derived including gyroscopic effects. Analysis showed the active support of the flywheel rotor with additional permanent magnet movements decreased the amplitude of flywheel rotor vibration considerably.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:10 ,  Issue: 4 )