By Topic

Mass transport characteristics in a pulsed plasma enhanced chemical vapor deposition reactor for thin polymer film deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
K. O. Goyal ; Dept. of Chem. Eng., Washington State Univ., Pullman, WA, USA ; R. Mahalingam ; P. D. Pedrow ; M. A. Osman

A pulsed plasma enhanced chemical vapor deposition (PECVD) reactor is used for the preparation of thin polyacetylene films. A theoretical model based on the mass transport characteristics of the reactor is developed in order to correlate with experimentally obtained spatial deposition profiles for the acetylene plasma polymer film deposited within the cylindrical reactor. Utilizing a free radical mechanism with gas phase initiation of the polymerization reaction as the rate controlling step, a system parametric study is performed to predict the Peclet number range of operation for the pulsed PECVD reactor. This parametric study indicates radical decay by diffusion to the reactor walls to be the significant physical phenomenon in the system. It is concluded that a quasi-steady-state model is a good tool for predicting the important mass transfer phenomena occurring in the pulsed plasma reactor

Published in:

IEEE Transactions on Plasma Science  (Volume:29 ,  Issue: 1 )