By Topic

Effects of fly ash on NOx removal by pulsed streamers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Tsukamoto, S. ; Dept. of Electr. Eng., Ariake Nat. Coll. of Technol., Fukoka, Japan ; Namihira, T. ; Douyan Wang ; Katsuki, S.
more authors

NOx removal methods using plasma chemical reactions in nonthermal plasmas have been widely studied. In this paper, the effects of the addition of fly ash on NOx removal using short-pulsed discharge plasmas are described. Fly ash which had been collected from a coal-burning thermal electrical power plant was used. Experiments were performed using four different mixtures of gases which included NO. These were (N2+NO), (N2+NO+O2), (N2+NO+H2O), and (N2+NO+O2+H 2O). These gas mixtures were used either with or without the addition of fly ash. The initial concentration of NO was fixed at 200 ppm (NO parts per million of the gas mixture), The study of the NOx (NO+NO2) removal was performed with the fly ash, as it is relevant to real situations in coal power plants. The results show that the presence of fly ash decreased the NOx removal rate slightly in the case of dry gas mixtures while it increased the NOx removal rate substantially in the case of wet gas mixtures. These results suggest that the presence of fly ash in the flue gases, which also contain a few percentages of moisture, would be advantageous to the treatment of flue gases emitted from thermal power plants for the removal of nitrogen oxides

Published in:

Plasma Science, IEEE Transactions on  (Volume:29 ,  Issue: 1 )