By Topic

High voltage stator for a flywheel energy storage system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Aanstoos, T. ; Center for Electromech., Texas Univ., Austin, TX, USA ; Kajs, J.P. ; Brinkman, W. ; Liu, H.-P.
more authors

The University of Texas at Austin Center for Electromechanics (UT-CEM) has designed and conducted component test/development for a flywheel energy storage system for pulsed loads and mobility load leveling in a tactical vehicle. Performance goals of this machine dictate that the stator windings will see continuous voltages of 6.7 kV and spikes to 10 kV. To manage the thermal loads produced by the intermittent 5 MW output pulses, and continuous 350 kW duty, the generator is cooled by oil at a maximum temperature of 90°C. UT-CEM designed and developed a novel insulation system and dual coolant passage arrays for the stator. Design performance was verified in laboratory prototype testing. This paper summarizes design goals, analysis, and mockup testing of the motor-generator stator

Published in:

Magnetics, IEEE Transactions on  (Volume:37 ,  Issue: 1 )